Protecting iOS against the aLTEr attacks

Researchers from Ruhr-Universität Bochum & New York University Abu Dhabi have uncovered a new attack against devices using the Long-Term Evolution (LTE) network protocol. LTE, which is a form of 4G, is a mobile communications standard used by billions of devices and the largest cellular providers around the world.

In other words, the attack can be used against you!

The research team has named the attack “aLTEr” and it allows the attacker to intercept communications using a man-in-the-middle technique and redirect the victim to malicious websites using DNS spoofing.

Note: According to their FAQ question: “Is there a logo for the attacks“, the answer is: “Maybe. There are no stickers, t-shirts, songs, …“. You gotta love their sense of humor since no attack is truly relevant without its own logo! ☻

The aLTEr attack

This attack works by taking advantage of a design flaw within the LTE network — the data link layer (aka: layer-2) of the LTE network is encrypted with AES-CTR but it is not integrity-protected, which is why an attacker can modify the payload.

As a result, the attacker is performing a classic man-in-the-middle where they are posing as a cell tower to the victim, while pretending to be the real subscriber to the real network. The traffic from the victim is sent to the attacker where it is modified and forwarded into the real network.

Figure 1 – the aLTEr MiTM attack illustrated

These types of attacks are not only limited to LTE networks. 5G networks may also be vulnerable to these attacks in future – if they don’t institute integrity protection.

Protecting against these types of attacks?

DNS is foundational to how the internet works; before any app connects to its service, before any web browser connects to the web site, before any email is sent: a DNS lookup is performed. Traditional DNS is designed to be very quick, not secure.

DNS spoofing attacks can be prevented by adding security to DNS itself, leveraging encryption and intelligent policies for name resolution. One example of this is implementing RFC 7858 or RFC 8310. These RFC’s reference the use of DNS over Transport Layer Security (TLS) and DNS over Datagram TLS (DTLS).

Since this is my blog, I guess I’m entitled to share my opinion. From the testing results that I have seen, DNS over TLS has a bit too much overhead and is lacking the performance required by DNS. This is why DNS over DTLS makes more a little more sense to me. We saw this with “SSL VPN” (which is a misnomer, it’s actually a TLS VPN), and time sensitive traffic for voice over IP. Moving the VPN to DTLS instead of TLS increased the performance and made VoIP with VPN truly achievable.

There is another, older option, which has successfully been implemented for quite some time already, known as DNSCrypt. Cisco Umbrella (the solution formerly known as OpenDNS) has been using DNSCrypt to secure DNS for many years.

Along these lines, Apple and Cisco have partnered to deliver the deepest level of visibility and control for enterprise-owned iOS devices with the Cisco Security Connector (CSC) for iOS.

CSC for iOS protects users from connecting to malicious sites, leveraging DNS as a control plane. The protections occur whether on the corporate network, on public Wi-Fi, or on cellular network. CSC encrypts the DNS queries and sends them to Cisco’s Umbrella service for resolution, which protects your user population and prevents the DNS spoofing attacks.

Well, I hope you enjoyed this rundown.


Leave a Reply

Please log in using one of these methods to post your comment: Logo

You are commenting using your account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

This site uses Akismet to reduce spam. Learn how your comment data is processed.